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Abstract

P
)A recently developed solution for the plastic strain, (x,t), on

y

the crack line is used in conjunction with a critical strain criterion

tconstruct curves for K(a) versus a, where a is the increase in crack

length. Resistance curves have been computed for various values of the

critical plastic strain. They show a monotonic increase of K(a) with

increase in crack length, to a constant steady-state value.
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1. Introduction

For small-scale yielding, the condition for continued crack advance

may be written as

K = KR(a) , (1.1)

where K on the left-hand side is regarded as the "applied" K, and a in

K(a) is the increase in crack length. The curve of KR(a) versus a is

called the resistance curve or R-curve. Under plane stress conditions,

KR(a) tends to be a monotonically increasing function of a, at least for

many metals. Following the notation of Ref.[l,p.20], we will use KC to

denote the value of K for initiation of crack propagation, i.e., C = K R(O).

In this paper we consider a general geometry such as an edge crack in

a thin sheet, and we construct resistance curves. These curves are based on

a critical strain criterion for crack propagation, which stipulates that

crack growth will proceed when the plastic strain on the crack line maintains

Pfa critical strain level e at a distance xf ahead of the crack tip. The
y

critical strain criterion was proposed by McClintock and Irwin [2] and it

has been used frequently for the Mode-Ill case. Rice [3,p.281] presented an

expression for the plastic shear strain on the crack line for Mode-Ill crack

propagation in an elastic perfectly-plastic material. It was also shown in

Ref.[3] that the fracture criterion of critical plastic shear strain leads to

an integral equation for the plastic zone size required for quasi-static

crack extension.

4,



2

The construction of curves for KR(a)/KIC presented in this paper for

plane stress, follows in general outline the method of Ref.[3]. The

construction is based on an expression for the crack-line strain which was

recently presented by Achenbach and Dunayevsky [4] and Achenbach and Li [5].

As shown in some detail in Ref.[5], in the plastic loading zone the stresses

and strains can be expanded in powers of the distance, y, to the crack line.

Substitution of the expansions into the equilibrium equations, the yield

condition and the constitutive equations, yields a system of simple ordinary

differential equations for the coefficients of the expansions. This system

is solvable if it is assumed that the stress a is uniform on the crack line.
y

By matching the relevant stress components and particle velocities to the

dominant terms of appropriate elastic fields at the elastic-plastic boundary,

Pa complete solution was obtained for the plastic strain, E , in the plane of
y

the crack. The solution depends on position on the crack-line and time,

and applies from the propagating crack tip up to the moving elastic-plastic

boundary.

It is shown in this paper that the critical strain criterion yields

an integral equation for x (a), where x (a) is the extent of the plastic
p p

zone on the crack line as a function of the increase in crack length.

The integral equation has been solved numerically for various values of

Ef /(y)PB, where (cy)PB is the crack-line strain at the elastic-plastic

boundary. A relation between K and x (a) subsequently
p

U
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yields resistance curves KR(a).

The geometry is shown in Fig. 1. The x3 -axis of a stationary coordinate

system is parallel to the crack front, and x1 points in the direction of

crack growth. The position of the crack tip is defined by xI = a(t). A

moving coordinate system, x,y,z, is centered at the crack tip, with its

axes parallel to the xlx 2 and x3 axes.

2-.
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2. Crack-Line Strain

For monotonic loading, expressions for the strain rate y(xlt), on the

crack line ahead of a propagating crack tip, are given in Refs. [ 4] and

[5] as

E. 2&(t) x (t) B A(t)+B 2 p (t) C 1 (t)+C 2 kp (t)

y (la(t 9n + 1 + I[x 1 -a(t)] 2, (2.1)
ka1 x-a (t) x (t)

p

where x1 defines the point of observation in the stationary coordinate system,

while a(t) defines the position of the crack tip and x (t) is the size of the plas-P

tic zone along the crack line. Also, k is the yield stress in shear,

E is Young's modulus, and the constants B 1 , B C and C have been derived

in Ref.[ 4] as

BI - 8(l+)[(K + 5) + 2(K + 1)V-2] -4 (2.2)

B2 .i(l+V)[(K + 5) + (K + )/22.3)

CI - l(l+v)[-(K + 5) + (K + 1)V2] + 2 (2.4)

C2 .l(l+)[-(K + 5) + 2(K + i)V2] ,(2.5)

where v is Poisson's ratio and K is defined as (3-v)/(l+v).

In the stationary coordinate system, (2.1) can be integrated to yield

cy(Xlt) - (Ey) + E (xlt) , (2.6)
yly PB

where (ey)PB is the elastic strain at the elastic - plastic boundary:

k(e k(2-v) ' (2.7)
yPB E 2.7)
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eP(xlt) is the plastic strain

t

Ey(Xt) = f [y(xl,s)ds (2.8)
y tp

The lower limit t , which is the time that the elastic-plastic boundary
P

reaches position xI and the plastic strain starts to accumulate, follows

from

a(t p) + x p(tp) = x (2.9)

By integration by parts of the terms multiplying B2 and C2,

EP(xlt) can be separated into two components:

t

EP(xl1t) = se[ x l t)] + , (xls)ds, (2.10)

t

where

E sP 1 C d- -1) (2.11)
k y [EYx 1 st)] = B2 ( -I) 2 2

g(Xlt) = x (t)/[xl-a(t)] , (2.12)

and

E= ((s) f[x-a(s),x (s)]  (2.13)
kyl 1 p

1 C 1f[xl-a(s),x p(s)] = x1-a(s) {2ing(xl's) + BI-B 2E(xls) + 1(XlS)],

2  (2.14)

.. . .. . . . . . . . . . . . . . .
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Here we have used (2.9) at the lower limits of integration of Eq.(2.8).

The lower limit t in (2.10) is defined as t = tf for tf > t p, where

tf is the time that crack propagation starts. When tp > tf, the lower

limit is defined as t = t
p

We will now assume that crack propagation is governed by the criterion

of a critical plastic strain at a fixed micro-structural distance xf ahead

of the crack tip, i.e., at x = a(t) + xf* The condition for stable

crack propagation then is

t

E = E [xp(t)/xf] + f P [a(t) + xf~sI ds, (2.15)

t
Pf

where E is the critical value of the plastic strain, and the right-hand
y

side follows from (2.10). Equation (2.15) is an equation for x p(t). For

the case tf < t , the integral in (2.15) vanishes when the upper limit is

taken as t = tf, and the following equation for xp(tf) is obtained

B2  1 E Pf] (t ) 1 = 0 (2.16)

xf p (tf) [ C2 - B2 - E I p f 2 2 xf

A convenient form of (2.15) can be obtained by replacing the

independent variable t by crack length a. Thus we consider the strain as

well as the position of the elastic-plastic boundary as functions of a.

After introducing the normalizations

a a/xf , xp(a) = Xp [t(a)]/xf , (2.17a,b)

we can write

. . . .
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a
Pf sP [x(a)] + f f [a + l-n,x p(n)]dn (2.18)

a

where

f[a + 1 - n,x (n)] a [2 n + B - B2 +C_ (2.19)
p a---i1 2 3 C2

= Xp (n)/(a + 1 - r) (2.20)

The lower limit a in Eq.(2.18) is defined by

a =0, when a + 1 < x (0) (2.21)-p

and

a + x (a) = a + 1, when x (0) < a + 1 , (2.22)

where x (0) = x p(t f)xf Equation (2.21) corresponds to tf > t , while

(2.22) corresponds to tf < t
p

Equation (2.18) is a Volterra integral equation for x (a), which can
P

be solved by a step-by-step procedure. If x (a), is known for
P

0 < a < aI < xp(0) - 1, then for a = a1 + A < x (0) - 1, Eq.(2.18) yields

[(a 1+A) - f f[a 1+A+l-nx (n)]dn (2.23)

0

where A is small. The integral in (2.21) can be approximated by

a+A a 1

f al ++l-rXp(n)]dn f f[a 1+A+l-n,x r(n)]dn + f(a1+A+l-n,x p(a)]A (2.24)

0 0

The integral on the right-hand-side of (2.24) is known. Substitution of

(2.24) in (2.23) yields a cubic equation for x (a1+A), which can be solved.

This value for xp(al+A) is used as the starting point for an iteration procedure

whereby subsequent values of x (a1+A) are substituted in the integral in

P'. ...
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Eq.(2.21) to yield improved values of x (a1-+A), until a desired accuracy

has been achieved. For the first step in this procedure we use

x (A) x (0) + x'(O)A, where x (0) follows from (2.16), and
p p p p

x'(0) = dx (a)/da at a = 0, can be obtained from (2.18).
p p

For the case when x (0) - 1 < a, defined by (2.22), the lower limit ofp

the integral is a function of the upper limit, a, and of the unknown function

x p(a). Again, if x p(a) is known for a < a then for a = a1 + A, Eq. (2.22)
* - * -- *

yields a + x (a) = a + A + 1, where x (a) is known since a < a Hence

we can solve a = a (alA). Using an analogous method as before, Eq.(2.18)

can subsequently be solved for x (a +A).
p

In the actual computations the following values of the relevant parameters

have been considered:

f _pf

S= /(cy ) = 2, 6,and 10 (2.25)
y y y PB

The Poisson's ratio was taken as v = 0.3. For a = 0, the value of x (0)
P

follows directly by computation of the real root of Eq.(2.16), since

x (0) = x (tf)/xf. The numerical results show a subsequent increase of

x (a) with a, where x (a) approaches an asymptotic value for large a.p 'p

For quasi-static steady-state crack extension the following relation

was derived by Achenbach and Li [5]:

P k I 1 3
e (x) Zn B1Zn () - S [(-) - 1i]} (2.26)

p p p

The critical strain criterion then yields the relation

- [n 2 - + - [O./ -1] = 0 (2.27)
KYp 1 np 3 p
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Equation (2.27) can be solved for x to yield a result which is independentP

of crack-tip speed and loading state. This result is just the asymptotic

value of x (a) as a increases.
p

A convenient form of the resistance curve shows the ratio K IK versus

a dimensionless crack length. Here KI is the present stress intensity

factor, and KC is the value of the stress intensity factor which is

required to satisfy the fracture criterion for a stationary crack. In

Ref.[5, Eq.57] an expression was presented which relates x (t) to KI/k.

In the present notation this expression states

2/2 1 12
x (a) - [K (a)/k]2  (2.28)
p 9 r x f

It follows that

K(a)/KIc = C(a)/Kic = [x p(a)/x p(0)] (2.29)

The quantity xf which enters in a, can be eliminated by equating the result

for x (0) obtained from (2.16) to x (0) as obtained from (2.28). By usingP P

the resulting expression for xf in the definition of a, as given by (2.17a),

we find

- a 9ra x p(0)
a = - = - - (2.30)

xf 2/2 [K i/k]

f

For the three values of c given by Eq.(2.25), curves for K(a)/KIc
y

versus a are shown in Fig. 2. It is noted that the resistance curves show

a monotonic increase with increase in crack length, to a stable phase of

crack propagation where KR(a)/KIC assumes the steady-state value.

-- J- ",.
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Fig. 1. Geometry of propagating crack; a(t) is increase

in crack length; x = x (t) defines the elastic-plastic
p

boundary.
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